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ABSTRACT

Context. The centrifugal force is often omitted in simulations of stellar convection because it is either assumed to be weak compared
to the gravitational force or for numerical reasons. This force might be important in rapidly rotating stars such as solar analogues due
to its Ω2 scaling, where Ω is the rotation rate of the star.
Aims. We study the effects of the centrifugal force in a set of 21 semi-global stellar dynamo simulations with varying rotation rates.
Among these, we include three control runs aimed at distinguishing the effects of the centrifugal force from the nonlinear evolution
of the solutions.
Methods. We solve the 3D magnetohydrodynamics equations with the Pencil Code in a solar-like convective zone in a spherical
wedge setup with a 2π azimuthal extent. The rotation rate as well as the amplitude of the centrifugal force are varied. We decompose
the magnetic field in spherical harmonics and study the migration of azimuthal dynamo waves (ADWs), energy of different large-scale
magnetic modes, and differential rotation.
Results. In the regime with the lowest rotation rates, Ω = 5 − 10Ω�, where Ω� is the rotation rate of the Sun, we see no marked
changes in neither the differential rotation nor the magnetic field properties. For intermediate rotation with Ω = 20−25Ω� we identify
an increase of the differential rotation as a function of centrifugal force. The axisymmetric magnetic energy tends to decrease with
centrifugal force while the non-axisymmetric one increases. The ADWs are also affected, especially the propagation direction. In the
most rapidly rotating set with Ω = 30Ω�, these changes are more pronounced and in one case the propagation direction of the ADW
changes from prograde to retrograde. The control runs suggest that the results are a consequence of the centrifugal force and not due
to the details of the initial conditions or the history of the run.
Conclusions. We find that the differential rotation and properties of the ADWs change as a function of the centrifugal force only when
rotation is rapid enough.
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1. Introduction

Simulations of stellar convection, usually aimed at explaining
solar phenomena, often omit the centrifugal force. This is due to
the assumption that the amplitude of it is small due to the rel-
atively slow rotation of the Sun. Earlier in its history, however,
the Sun must have been rotating much more rapidly because, in
general, stars are born with larger angular momenta which are
slowly removed by magnetic braking (Skumanich 1972; Matt
et al. 2012). Therefore, the influence of the centrifugal force
is expected to be more important at earlier stages because its
amplitude increase as the square of the rotation rate. To study
these phases of rapid ration in the solar context, such as magnetic
field evolution, one has to study young solar analogues at earlier
phases with stars that are rotating much faster than the Sun (e.g.
Lehtinen et al. 2016). This allows us to study the evolution of the
Sun up to the present, given that outflows that are produced by
magnetic braking do not significantly affect the structure of the
star but only the rotation rate.

Observations of magnetic fields of solar analogues reveal
that they are active, and show characteristic split in the axisym-
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metric and non-axisymmetric spot distributions (Lehtinen et al.
2016). These authors also showed that among solar-like stars
with non-axisymmetric spot distribution, the active longitude pe-
riods have been estimated to be shorter than the rotation period of
the star. One plausible explanation is the presence of azimuthal
dynamo waves (ADWs). These waves propagate in the rotating
frame of reference of the star either in prograde or retrograde
fashion with a uniform frequency irrespective of the underly-
ing fluid motions. Such solution were first discovered in linear
mean-field dynamo models (e.g. Krause & Rädler 1980). To ex-
plain their observations, Lehtinen et al. (2016) argued that the
propagation of the ADWs must be prograde.

V530 Per is an extreme case of a rapidly rotating Sun-like
star with an estimated rotation period of 0.32 days (Cang et al.
2020) which corresponds to about 75Ω�, where Ω� is the rota-
tion rate of the Sun. At the surface, this makes the gravitational
force only 9.5 times larger than the centrifugal force. In compar-
ison, in the Sun this ratio is 5.3× 104. There are also clear differ-
ences between the magnetic field of V530 Per and the Sun. For
example, Cang et al. (2020) also found that the magnetic field
distribution of V530 Per is asymmetric with respect to the equa-
tor. The magnetic field is characterized by a stronger magnetic
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field near the north pole with a peak field strength of 1 kG. It is
yet unclear why similar stars have different field strengths and
symmetries but there are indications that rotation may play an
important role in the magnetic activity of Sun-like stars (Lehti-
nen et al. 2016) as well as low mass stars (e.g. Reiners et al.
2022).

Such rapid rotation is commonly found in close bina-
ries if tidal locking is assumed. For example, V471 Tau is a
post-common-envelope binary where the secondary is a main-
sequence solar-like star with a mass of 0.93M�, a radius of
0.96R�, and with a binary period of about 0.5 days (e.g.
Völschow et al. 2016). If tidal locking is assumed, this gives
a ratio of gravitation to centrifugal forces of about 22. Interest-
ingly, Zaire et al. (2022) analyzed the magnetic activity of the
K2 star in V471 Tau and found that the magnetic field is also
dominated by a concentration on one hemisphere. The authors
found that the spot coverage and brightness map, derived from
Zeeman-Doppler imaging, do not follow the magnetic activity
cycle inferred from Hα variability. This suggests the possibil-
ity of the inappropriateness of spot coverage to study magnetic
cycles in rapidly rotating stars (Zaire et al. 2022).

Simulations of stellar dynamos often produce ADWs whose
characteristics change with rotation rate and the physics in-
volved. Cole et al. (2014) studied the propagation properties of
ADWs in a set of three runs with moderate rotation rates of up to
6.7 times the solar value with 3D magnetohydrodynamical sim-
ulations. They found that the waves have a rotation rate that is
slower than the gas, that is, they are retrograde. The magnetic
structure in the ADW propagates like a rigid body and therefore
such motion cannot be explained by advection by the fluid in a
differentially rotating convection zone. This result was later con-
firmed by Viviani et al. (2018) with a larger set of runs. Most
of their runs show retrograde ADWs independently of the rota-
tion rate but in some cases standing or prograde waves appeared.
Recently, Viviani & Käpylä (2021) presented a set of four runs
with moderate rotation rates where the usual prescribed radial
dependence of the radiative heat conductivity was replaced by
the more realistic Kramers opacity law (Brandenburg et al. 2000;
Käpylä et al. 2017). This suggests that using such heat conduc-
tivity might affect the direction of the propagation of ADWs indi-
rectly by affecting the flow through the pressure gradient and/or
dissipation. However, it also might come with the cost of pushing
the transition point of differential rotation profiles of simulations
from anti-solar to solar-like profiles to larger Coriolis numbers
Viviani & Käpylä (2021).

Navarrete et al. (2022b) explored the effect of the centrifugal
force already in the context of changes in the internal structure
of the stars, particularly with the aim to check whether the result-
ing changes are sufficient to explain the observed eclipsing time
variations in post-common-envelope binaries, as proposed in the
Applegate scenario (Applegate 1992). In this paper we study the
effects of centrifugal force in semi-global dynamo simulations
further. We focus on differential rotation, magnetic energy, and
ADW propagation. In Sect. 2 we present the model and the im-
plementation of the centrifugal force. Section 3 presents the re-
sults and our conclusions are drawn in Sect. 4.

2. Model

The fully compressible magnetohydrodynamics equations are
solved in a spherical grid with coordinates (r,Θ, φ) where 0.7R 6
r 6 R is radius with R being the radius of the star, π/12 6 Θ 6
11π/12 is the colatitude, and 0 6 φ < 2π is the longitude. The
model is the same as in Käpylä et al. (2013) and Navarrete et al.

(2020, 2022a). The equations adopt the following form:

∂A
∂t

= u × B − ηµ0 J, (1)

D ln ρ
Dt

= −∇·u, (2)

Du
Dt

= F grav + FCor + F cent
−

1
ρ

(∇p − J × B − ∇ · 2νρS),

(3)

T
Ds
Dt

=
1
ρ

[
ηµ0 J2 − ∇ · (Frad + FSGS)

]
+ 2νS2, (4)

where A is the magnetic vector potential, B = ∇× A is the mag-
netic field, u is the velocity field, η is the magnetic diffusivity, µ0
is the vacuum permeability, t is the time, J = ∇ × B/µ0 is the
electric current density, ρ is the mass density, p is the pressure, ν
is the viscosity,

S i j =
1
2

(ui; j − u j;i) −
1
3
δi j∇ · u (5)

is the rate-of-strain tensor, where semicolons denote covariant
differentiation. T is the temperature, s is the specific entropy.
Furthermore, Frad = −K∇T is the radiative flux which is mod-
eled with the diffusion approximation, where K = K(r) has a
fixed spatial profile; see Sect. 2.1 in Käpylä et al. (2014). We
also investigate the effects of Kramers opacity in some runs (see
Sect. 3.3). We do this by replacing the radiative heat conductivity
K in the radiative flux term Frad = −K∇T by

K = K0

(
ρ

ρ0

)−(a+1) ( T
T0

)3−b

, (6)

where a = 1 and b = −7/2 correspond to the Kramers opac-
ity law (Brandenburg et al. 2000). K0 is a constant that depends
on natural constants and in simulations also on the luminosity
of the model (Viviani & Käpylä 2021). FSGS = −χSGSρT∇s
is a sub-grid scale flux which is implemented to smooth grid-
scale fluctuations which would otherwise make the system un-
stable. Here, χSGS is the sub-grid scale entropy diffusivity and
it varies smoothly from 0 at r/R = 0.7 to 0.4ν at r/R = 0.72,
then smoothly increases by a factor of 12.5 at r/R = 0.98, above
which is constant. The first three term on the right-hand-side of
Eq. (4),

F
grav = −(GM/r2)r̂, (7)

F
Cor = −2Ω0 × u, (8)

F
cent = −c fΩ0 × (Ω0 × r), (9)

are the gravitational, Coriolis, and centrifugal forces.

2.1. Boundary and initial conditions

The magnetic field follows a perfect conductor condition at the
bottom and is radial at the surface. The temperature gradient is
kept fixed at the bottom whereas at the top we apply a black-
body condition. For the entropy and density, we assume vanish-
ing first derivative at both latitudinal boundaries. The latitudinal
boundaries are stress-free and perfectly conducting. The initial
state is isentropic. Perturbations are introduced by initializing
the magnetic and velocity fields with low amplitude Gaussian
white noise.
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2.2. Centrifugal force

The parameter c f in Eq. (9) was introduced by Käpylä et al.
(2020) and it controls the strength of the centrifugal force. c f = 1
corresponds to the unaltered centrifugal force amplitude, and
c f = 0 implies no centrifugal force. It is defined as

c f =

∣∣∣F cent
∣∣∣∣∣∣F cent

0

∣∣∣ , (10)

with |F cent
0 | being the unaltered magnitude of the centrifugal

force. The necessity of controlling the centrifugal force is due
to the enhanced luminosity and rotation rate in simulations of
compressible stellar (magneto-)convection. Similarly to Käpylä
et al. (2020), each run is initialized with c f = 0 and it is increased
in small incremental steps after the saturated regime is reached.

To give a sense of how strong the centrifugal force is in our
simulations, we compute the ratio of gravitational to centrifugal
forces in the simulations as well as in a real Sun-like star with
the same rotation rate. We define the ratio between the two as

F =
(|F cent

|/|F grav
|)sim

(|F cent
|/|F grav

|)?
, (11)

where the subscripts ? denote the real star and sim the simu-
lations. These values are shown in the last column of Table. 1.
By using a value as low as c f = 10−4, our simulations are in-
fluenced by the centrifugal force just below the value that the
equivalent star with the same rotation rate and radius would have,
and the simulations that have the strongest centrifugal force have
F = 87.

3. Results

We ran a total of 21 simulations separated in five sets. These
sets are C, D, E, F, and G. Each set is characterized by a fixed
rotation rate of 5, 10, 20, 25, and 30 times the solar rotation rate,
respectively. We varied the value of the centrifugal force within
each set.

3.1. Differential rotation

We begin by exploring changes in the differential rotation of the
simulations by defining

∆
(60◦)
Ω

=
Ω(0◦, s) −Ω(60◦, s)

Ω(0, s)
, (12)

and

∆
(r)
Ω

=
Ω(0◦, s) −Ω(0◦, b)

Ω(0◦, s)
, (13)

as measures of latitudinal and radial differential rotation. Here,
s and b indicate that the values are taken near the surface
(r = 0.98R) and the bottom (r = 0.72R), respectively, and
Ω = Ω0 + uφ/(r sin θ), where the overbars denote azimuthal av-
eraging, namely

uφ =
1

2π

∫ 2π

0
uφ(r, θ, φ, t) dφ. (14)

In what follows, additional time-averaging is denoted by 〈·〉t.
Time-averages of ∆

(60◦)
Ω

and ∆
(r)
Ω

are listed in the 8th and 9th
columns of Table 1.

0.0 0.5 1.0 1.5 2.0
0

2

4

〈∆
(6

0◦
)

Ω
〉 t

[×
10
−

3
] Set E

Set F

Set G

0.0 0.5 1.0 1.5 2.0
cf [×10−3]

−0.5

0.0

0.5

1.0

〈∆
(r

)
Ω
〉 t

[×
10
−

3
]

Fig. 1. Time-averaged differential rotation for sets E, F, and G in red,
blue and yellow, respectively. The top and bottom panels show ∆

(60◦)
Ω

and ∆
(r)
Ω

according to Eqs. (12) and (13), respectively.

0.0 0.5 1.0 1.5 2.0
cf [×10−3]

0.5

1.0

1.5

〈∆̃
(r

)
Ω
〉 t

[×
10
−

3
]

Set E

Set F

Set G

Fig. 2. Time-averaged radial differential rotation as defined in Eq. (15).

In the slowly rotating runs, sets C and D, there are changes
in both radial and latitudinal differential rotation but which are
very small. Comparing the runs without the centrifugal force
with those with the largest value of c f , the biggest change is
in set D of about 20% in ∆

(r)
Ω

. However, larger deviations are
found in sets E, F, and G, which are also shown in Fig. 1 with
the corresponding error bars, which are estimated by computing
the average of three equally long parts of the timeseries and tak-
ing the largest deviation from the total as the error. In set E we
see that the differential rotation of the runs that were initialized
with the same c f but at a different time, namely E2 with E3 and
E4 with E5, have very similar values. This shows that the av-
eraged differential rotation does not significantly depend on the
initial conditions when the centrifugal force is added. Within this
set the maximum deviation of ∆

(r)
Ω

is about 23% between runs E1
and E5. In contrast, ∆

(60◦)
Ω

is reduced by about 17%.
Recently, Käpylä (2023) noted that the details of the radial

profile of Ω can introduce spurious effects in the measure of
differential rotation as defined in Eq. (13). Following their ap-
proach, we define the mean rotational profile at the equator as
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Table 1. Summary of simulations parameters.

Run Ω/Ω� c f Co Ta Re Rm 〈∆
(60◦)
Ω
〉t 〈∆

(r)
Ω
〉t F

C1 5 0 7.3 1.6 × 108 3.0 × 103 3.0 × 103 4.2 × 10−2 2.5 × 10−2 0
C2 5 10−4 7.3 1.6 × 108 3.0 × 103 3.0 × 103 4.3 × 10−2 2.5 × 10−2 0.87
C3 5 10−3 7.3 1.6 × 108 3.0 × 103 3.0 × 103 4.4 × 10−2 2.6 × 10−2 8.7
C4 5 10−2 6.8 1.6 × 108 3.2 × 103 3.2 × 103 4.8 × 10−2 2.8 × 10−2 87
D1 10 0 20 6.3 × 108 2.2 × 103 2.2 × 103 1.3 × 10−2 5.6 × 10−3 0
D2 10 10−4 20 6.3 × 108 2.2 × 103 2.2 × 103 1.4 × 10−2 6.1 × 10−3 0.87
D3 10 10−3 20 6.3 × 108 2.2 × 103 2.2 × 103 1.4 × 10−2 6.2 × 10−3 8.7
D4 10 10−2 20 6.3 × 108 2.2 × 103 2.2 × 103 1.5 × 10−2 7.0 × 10−3 87
E1 20 0 57 2.5 × 109 1.6 × 103 1.6 × 103 3.4 × 10−3 9.0 × 10−4 0
E2 20 10−4 56 2.5 × 109 1.6 × 103 1.6 × 103 3.7 × 10−3 9.9 × 10−4 0.87
E3 20 10−4 54 2.5 × 109 1.6 × 103 1.6 × 103 3.7 × 10−3 8.1 × 10−4 0.87
E4 20 10−3 53 2.5 × 109 1.7 × 103 1.7 × 103 3.9 × 10−3 1.1 × 10−3 8.7
E5 20 10−3 53 2.5 × 109 1.7 × 103 1.7 × 103 4.0 × 10−3 1.1 × 10−3 8.7
F1 25 0 100 4.0 × 109 1.1 × 103 1.1 × 103 6.9 × 10−4 -3.6 × 10−4 0
F2 25 10−4 93 4.0 × 109 1.2 × 103 1.2 × 103 1.6 × 10−3 3.9 × 10−4 0.87
F3 25 10−3 94 4.0 × 109 1.2 × 103 1.2 × 103 1.8 × 10−3 5.2 × 10−4 8.7
G1 30 0 140 5.7 × 109 9.7 × 102 9.7 × 102 4.5 × 10−4 −2.5 × 10−4 0
G2 30 10−4 140 5.7 × 109 9.7 × 102 9.7 × 102 4.6 × 10−4 −2.5 × 10−4 0.87
G3 30 10−3 130 5.7 × 109 1.0 × 103 1.0 × 103 9.0 × 10−4 −3.0 × 10−5 8.7
G4 30 2 × 10−3 110 5.7 × 109 1.2 × 103 1.2 × 103 1.5 × 10−3 1.8 × 10−4 17
G5 30 0 140 5.7 × 109 9.6 × 102 9.6 × 102 4.5 × 10−4 −2.2 × 10−4 0

Notes. For each run, Pr = 60, PrM = 1, and PrSGS = 2.5.

∆̃
(r)
Ω

=

∫ rout

rin
r2[Ω(θeq, r) − 1]dr∫ rout

rin
r2dr

, (15)

where rin = 0.72R and rout = 0.98R. In Fig. 2 we plot this
quantity as a function of c f . The differential rotation is solar-like
(∆̃(r)

Ω
> 0) as already seen in the top panel of Fig. 1. This shows

that, if there are transients of anti-solar differential rotation in
our simulations, these are not very long and a similar scaling is
seen with both definitions.

As the rotation velocity increases more, the amplitude of the
latitudinal differential rotation decreases further in Run F1. This
is a common feature of convection in rotating spherical shells
(see e.g. Brown et al. 2008; Gastine et al. 2014; Viviani et al.
2018), which is also found in Cartesian coordinates with the
star-in-a-box setup (Käpylä 2021). In runs F2 and F3, 〈∆(60)

Ω
〉t is

larger by a factor of about 2.3 and 2.6. Run F1 has bottom layers
that rotate slightly faster than the surface layers as indicated by
the negative sign of 〈∆(r)

Ω
〉t. The addition of the centrifugal force

changes this pattern back to a solar-like one, where the surface
layers rotate faster although the overall differential rotation re-
mains weak.

We do not see major differences between runs G1 and G2,
and in G3 the latitudinal (radial) differential rotation increases
(decreases) by a factor of about two (10). Each of these runs have
〈∆

(60)
Ω
〉t > 0, and 〈∆(r)

Ω
〉t < 0. In run G4, 〈∆(60)

Ω
〉t is comparable to

that in F2 and, similarly, the radial differential rotation is shifted
back to a solar-like pattern. However, the amplitudes are all very
small and close to rigid rotation. In the control simulation (G5)
we took a snapshot from run G3 and switched off the centrifugal
force, we obtained a solution which is nearly the same as in Run
G1. This hints at the possibility that the effects that we are seeing
are due to a systematic effect of the centrifugal force rather than
a chaotic behavior due to the change in the initial conditions.

Overall, we find that changes in the differential rotation due
to the centrifugal force are only noticeable in the rapidly and
very rapidly rotating sets E, F, and G. We conclude that the
changes in both 〈∆(60)

Ω
〉t and 〈∆(r)

Ω
〉t are due to the centrifugal

force and are likely to be insensitive to the details of the initial
conditions taken from the parent runs. In a real star the centrifu-
gal force would also change the geometry of the star. However,
we cannot assess the extent of this change because the fixed grid
in our model does not allow the geometry to change.

3.2. Magnetic Energy

The magnetic energy of the first three azimuthal modes near the
surface are listed in Table 2 and shown as a function of the cen-
trifugal force amplitude in Fig. 3. It is defined as

Em=i
mag =

1
2µ0

〈∑
l≥m

B2
l,m=i

〉
θφt

, (16)

where Bl,m=i are obtained from the spherical harmonic decom-
position. At slow rotation, sets C and D do not show signifi-
cant changes in the energy as the centrifugal force increases. At
the same time, we also see that in set C the axisymmetric mode
dominates the runs. This contrasts the previous study of Viviani
et al. (2018) where it was found that, at rotation rates larger than
Ω/Ω� ∼ 1.8, the m = 1 mode dominates the runs and after
Ω/Ω� ∼ 20, the dominance fell back to m = 0. However, at
higher grid resolutions, they found that this trend is suppressed
and so the m = 1 mode dominated again. In the current simula-
tions, we find that this trend only starts to show up in set D. In
all cases, the m = 2 mode is always subdominant by a factor of
roughly ten.

Similarly to the differential rotation, the effects of the cen-
trifugal force are more noticeable in sets E, F, and G. In this
rapidly rotating regime, the axisymmetric mode is always sub-
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10−4 10−3 10−2

10−2

C

10−3 10−1
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10−1 D
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10−1

E

10−3 10−1

cf(Ω/Ω�)2

10−1

E
m

ag
[1

05
J

m
−

3
] F

m = 0

m = 1

m = 2

10−3 10−1

10−1

G

10−3 10−1

10−2

10−1

All

Fig. 3. Magnetic energy of the three lowest azimuthal modes (m) as a function of the centrifugal force amplitude. Runs with c f = 0 are given a
fiducial value of c f (Ω/Ω�)2 = 10−4.

Table 2. Magnetic energy density from the spherical harmonic decomposition for each run in units of 105 J m−3.

Run Em=0
mag Em=1

mag Em=2
mag

C1 3.2 × 10−2 ± 4.7 × 10−3 2.7 × 10−2 ± 6.6 × 10−3 5.4 × 10−3 ± 1.0 × 10−3

C2 3.6 × 10−2 ± 1.8 × 10−3 2.6 × 10−2 ± 5.4 × 10−3 6.2 × 10−3 ± 3.3 × 10−4

C3 2.9 × 10−2 ± 1.0 × 10−3 2.8 × 10−2 ± 1.0 × 10−3 6.3 × 10−3 ± 1.5 × 10−4

C4 4.5 × 10−2 ± 2.1 × 10−2 2.3 × 10−2 ± 1.1 × 10−2 6.8 × 10−3 ± 1.2 × 10−3

D1 2.7 × 10−2 ± 1.4 × 10−2 7.3 × 10−2 ± 6.3 × 10−2 7.5 × 10−3 ± 5.4 × 10−4

D2 3.9 × 10−2 ± 2.8 × 10−2 7.4 × 10−2 ± 3.5 × 10−2 8.0 × 10−3 ± 1.5 × 10−3

D3 4.1 × 10−2 ± 2.7 × 10−2 9.1 × 10−2 ± 2.5 × 10−2 8.3 × 10−3 ± 1.8 × 10−3

D4 1.1 × 10−2 ± 8.8 × 10−4 6.3 × 10−2 ± 2.0 × 10−4 6.4 × 10−3 ± 1.5 × 10−4

E1 6.3 × 10−2 ± 3.3 × 10−2 2.4 × 10−1 ± 1.0 × 10−1 3.0 × 10−2 ± 1.4 × 10−2

E2 2.3 × 10−2 ± 1.3 × 10−2 2.2 × 10−1 ± 1.8 × 10−2 1.3 × 10−2 ± 3.7 × 10−3

E3 3.7 × 10−2 ± 2.0 × 10−2 3.1 × 10−1 ± 2.4 × 10−2 1.5 × 10−2 ± 2.2 × 10−3

E4 2.1 × 10−2 ± 1.1 × 10−2 2.2 × 10−1 ± 1.7 × 10−2 1.3 × 10−2 ± 2.5 × 10−3

E5 1.5 × 10−2 ± 3.9 × 10−3 3.0 × 10−1 ± 7.9 × 10−3 1.2 × 10−2 ± 4.0 × 10−5

F1 9.4 × 10−2 ± 7.8 × 10−2 1.4 × 10−1 ± 8.9 × 10−2 4.3 × 10−2 ± 2.8 × 10−2

F2 4.4 × 10−2 ± 1.7 × 10−2 7.2 × 10−2 ± 2.1 × 10−2 1.7 × 10−1 ± 5.4 × 10−2

F3 3.7 × 10−2 ± 1.2 × 10−2 1.2 × 10−1 ± 7.4 × 10−2 7.4 × 10−2 ± 3.6 × 10−2

G1 1.4 × 10−1 ± 3.9 × 10−2 1.3 × 10−1 ± 3.2 × 10−2 1.2 × 10−1 ± 3.0 × 10−2

G2 1.4 × 10−1 ± 4.3 × 10−2 1.5 × 10−1 ± 3.2 × 10−2 1.2 × 10−1 ± 3.0 × 10−2

G3 3.4 × 10−2 ± 9.4 × 10−3 6.6 × 10−2 ± 1.9 × 10−2 1.7 × 10−1 ± 3.7 × 10−2

G4 2.5 × 10−2 ± 3.8 × 10−3 1.6 × 10−1 ± 5.7 × 10−2 4.5 × 10−2 ± 1.2 × 10−2

G5 8.5 × 10−2 ± 4.3 × 10−2 8.8 × 10−2 ± 4.6 × 10−3 1.1 × 10−1 ± 3.2 × 10−2

dominant. In set E, the m = 1 mode has always the largest energy
and as the amplitude of the centrifugal force increases, Em=0

mag de-
creases and so does Em=2

mag . We do not see noticeable differences in
between runs E2 and E3, which have the same centrifugal force
but were initialized at different times. This is also the case for
runs E4 and E5, thus pointing out that no hysteresis is observed
and the results are independent of the history of the run. In set
F, we see that the energy in the m = 0 mode decreases, and in

Run F2 the m = 2 mode carries most of the energy. However,
when the centrifugal force is increased further, the m = 1 mode
becomes once again dominant.

In Run G1 there is no clearly dominating mode and the en-
ergy in the m = 0 mode is only roughly 5% larger than in m = 1.
As the centrifugal force is first added in Run G2, the energy of
the m = 0 mode increases by about 10%. However, similarly to
Run F2, Run G3 has most of the magnetic energy in the m = 2
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Fig. 4. Period of the azimuthal dynamo waves as a function of normal-
ized rotation rate for runs without the centrifugal force.

mode, which is about 66% larger than Em=0
mag and Em=1

mag combined.
Increasing the centrifugal force further, we see that the dominant
mode is m = 1, same as in the case of Run F3. When the cen-
trifugal force is switched off, the distribution of the energy goes
back to levels nearer to Run G1 with c f = 0.

3.3. Azimuthal dynamo waves

We begin by estimating the period of the ADWs by building a
periodogram and identifying the signal with the largest power
as the main cycle. We then investigate whether there are ten-
dencies between the period of the ADW and the rotation rate in
runs without the centrifugal force. This is shown in Fig. 4. From
Ω = 5Ω� to Ω = 20Ω�, the period of the ADWs of the m = 1
and m = 2 modes seems to increase with rotation. For more
rapid rotation the period of the m = 1 ADW decreases whereas
for the m = 2 mode this tendency appears for Ω ≥ 25Ω�. For the
two most rapidly rotating cases the period of the m = 2 ADW
exceeds that of the m = 1 mode.

To explore the migration pattern of the ADW, we show in
Fig. 5 the m = 1 mode of the radial magnetic field near the
surface at a latitude of 60◦ for runs C1, C3, D1, D3, E1, and
E5, as well as the m = 2 mode for runs F1, F2, G1, and G3.
Over-plotted is the advection path due to differential rotation.
In Table 3 we list the period of the ADWs at θ = 60◦ and the
direction of the propagation.

In runs C1 and C3 we obtain a retrograde migration with no
evidence of changes due to the centrifugal force. Both migration
patterns appear to be constant in time with no interruptions in be-
tween. Similarly, the ADW in runs D1 and D3 have a retrograde
migration pattern but are characterized by a longer period. Run
E1 has an interesting non-axisymmetric dynamo solution which
shows periods of prograde and standing ADWs for the m = 1
mode. The migration of the ADW is changed by the centrifugal
force as evidenced from the panel for Run E5. This run has a
retrograde migration, similarly to sets C and D, and shows no
similarity to Run E1. As shown in Sect. 3.1, the change in the
latitudinal differential rotation between runs E1 and E5 is about
17%. However, the ADWs propagate almost like rigid structures
so differential rotation cannot directly be used to explain their
behavior. The precise origin of ADWs is unclear even in the case
where the centrifugal force is absent, but it is likely that quan-
tities relevant for large-scale dynamos, such as differential rota-
tion, kinetic helicity and other turbulent quantities, along with
their spatio-temporal profiles play roles. However, the changes
we observe when the centrifugal force is included suggest that

Table 3. Properties of the azimuthal dynamo waves.

Run PADW [yr] Propagation
C1 11.44∗m1

R
C2 9.64∗m1

R
C3 8.48m1 R
C4 8.80m1 R
D1 22.88m1 R
D2 22.45m1 R
D3 19.73m1 R
D4 21.60m1 R
E1 >187.30m1 S,P
E2 - S
E3 >116.40m1 R,P
E4 >64.07m1 R
E5 >73.48m1 R
F1 >52.64†m2 R,P
F2 >35.84m2 R
F3 >15.04m2 R
G1 26.62∗,†m2 P
G2 40.74∗,†m2 P
G3 69.68m2 R
G4 31.65∗m2

R
G5 65.60∗m2

P

Notes. Data taken at latitude θ = 60◦ for each run. The ‘greater than’
symbol indicates that the period of the ADW is not covered in the sim-
ulated time. ‘∗’ denote a difference between the period of the ADW at
the opposite latitude, and ‘†′ denotes a nearly equally strong m = 1 and
m = 2 signals. S, R, and P stand for standing, retrograde, and prograde
propagation. In the case of Run E1, a wave with a period of about 80
years can also be identified.

already subtle changes in the velocity field are enough to signif-
icantly alter the behavior of ADWs.

In Run F1 the wave is standing or very slowly migrating in a
retrograde direction. The migration period seems to decrease as
the centrifugal force is added in the lower panel of Fig. 6, where
the wave travels about 120◦ in azimuth. Also evident here is the
increase in the magnitude of the m = 2 mode at the southern
hemisphere. It also seems that this part contributes the most to
the change in magnetic energy seen in Fig. 3. It is only towards
the end of the simulations that Bm=2

r at the northern hemisphere
catches up and becomes comparable in strength to the south-
ern hemisphere counterpart, as noted by comparing the panels
of Run F2 in Figures 5 and 6.

In the rapidly rotating regime, the m = 2 mode of Run G1
has a periodic wave with a period of about 26 years (see Table 3),
with clear prograde propagation. The centrifugal force changes
the propagation direction as can be seen in the last panel of Fig. 5
(Run G3), and the period of the ADW is also affected such that
now is about 70 years. In this case, the latitudinal differential ro-
tation is doubled in Run G3 as compared to Run G1. Although
this is the most obvious change between the simulations, it is
difficult to explain the change in the ADWs by this alone as dis-
cussed above.

In general, we find a preference for retrograde propagation as
in Viviani et al. (2018). Interestingly, however, Run E1 shows a
combination of standing and prograde waves and G1 is prograde.
A subsequent study by Viviani & Käpylä (2021), where the pre-
scribed heat conductivity was replaced by the Kramers opac-
ity law, showed that there is a tendency of producing prograde-
propagating ADWs. We replace the fixed radial profile K(r) with
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Fig. 6. Same as Fig. 5 but at θ = −60◦ for runs F1 (top) and F2 (bottom).

the corresponding quantity from Kramers opacity (see Eq. 6) and
branch Run E1 off to a new Run K1. The centrifugal force is
added in Run K2 with c f = 5 × 10−4. Figure 7 shows the re-
constructed m = 1, 2 modes for these two runs. It is clear that
Run E1 is different than K1 as the properties of the ADW are
not reproduced when the Kramers opacity is used. In the latter
case, the ADW is prograde for both m = 1 and m = 2 modes
which also have comparable energies. This is in accordance to
Viviani & Käpylä (2021) in that it seems like prograde migra-
tion is favored when the Kramers opacity is used. When the
centrifugal force is added in Run K2, the strength of the first
non-axisymmetric mode decreases down to around 1 kG but the
direction of the propagation appears to be unaffected. Interest-
ingly, the m = 2 mode increases from about 4 kG in Run K1
to roughly 6 kG in Run K2. The propagation pattern is interest-
ing in that it seems to oscillate around a mean azimuth with an
amplitude of 40◦ between t = 40 yr and t = 110 yr. After this,
the strength of the m = 2 (m = 1) mode decreases (increases)
and at around t = 150 yr the m = 2 mode reappears without a
corresponding decrease of the m = 1 mode. In contrast to set E,
the combination of Kramers opacity and centrifugal force pro-
duces a dominant m = 2 mode, which was only found in the
more rapidly rotating runs F2 and G3.
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Fig. 7. ADWs for the runs with Kramers opacity without the centrifugal
force (left) and with the centrifugal force (right).

4. Summary and conclusions

In this paper we have studied the effects of the centrifugal force
on semi-global dynamo simulations. It is important to assess its
effects in the context of young solar analogues, which are used
to study the Sun in an astrophysical context.

The amplitude of the centrifugal force is considered in our
setup as a free parameter, and thus decoupled from the Corio-
lis term and the rotation of the star. In this way, its amplitude is
artificially reduced by the control parameter c f . This allows us
to avoid an unrealistically large centrifugal force (Käpylä et al.
2013). This approach was applied to a total of twenty one simu-
lations divided in five sets, each characterized by a different rota-
tion rate and with different values of c f within each set. We found
that the centrifugal force induces changes in the differential ro-
tation and magnetic field only when rotation is rapid enough.

Both the latitudinal and radial differential rotation tend to in-
crease with increasing centrifugal force. In the two most rapidly
rotating runs without the centrifugal force we obtained an anti-
solar radial differential rotation. After including the centrifugal
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force, this solutions changed to solar-like differential rotation.
Namely, the outer layers of the convection zone went from ro-
tating more rapidly to more slowly relative to the deeper lay-
ers. All of our runs have a solar-like latitudinal differential ro-
tation where high latitudes rotate slower than the regions nearer
to the equator. This difference increases as the centrifugal force
becomes stronger (see Fig. 1).

The magnetic energy, shown in Fig. 3, also shows noticeable
effects only when the rotation is rapid enough in sets E, F, and
G. In Set C, all runs are dominated by the m = 0 mode and by
the m = 1 mode in Set D and show small changes in the energy
as a function of the centrifugal force amplitude. In the rapidly
rotating regime, it is common to find a dominating m = 1 mode
and the energy of the m = 0 and m = 2 modes decreases as c f
increases in Set E. This trend is also present in sets F and G with
the difference that there are some cases where the m = 2 mode
dominates.

By analyzing the ADWs near the surface of our runs, we
found that the direction of the propagation changes from pro-
grade to retrograde in some rapidly rotating runs as a function of
the centrifugal force. This is most easily seen in runs E5 and G3
in Fig. 5. For Run F2, we find that the direction of the propaga-
tion of the ADW is not clearly affected but there are indications
that its period might be affected (see Fig. 6).

To confirm the effects of the centrifugal force, we introduce
three control runs. First, in order to test the importance of the ini-
tial conditions, we have started Run E3 (E5) with the same value
of c f as E2 (E4) from Run E1 but at a different time. There are
negligible differences in the differential rotation as can bee seen
in columns 8th and 9th in Table 1 and in the overlapping points
at constant c f in Fig. 1. The magnetic energy is only slightly af-
fected as seen in the third panel of Fig. 3 from the data points at
constant c f (Ω/Ω�)2. Secondly, it is important to look at the solu-
tion of a run with the centrifugal force when it is turned off again.
We did this experiment with Run G3, in which the propagation of
the ADW was retrograde (see the last panel of Fig. 5). When the
centrifugal force was turned off, the propagation changed back
to prograde as it was in the original Run G1. Overall, the con-
trol runs show that the changes described above are due to the
centrifugal force and not likely the outcome of the non-linear
evolution of the equations.

A previous study by Viviani & Käpylä (2021) showed that
the propagation of the ADWs can be affected by the introduction
of the Kramers opacity instead of a fixed radial profile of heat
conductivity. We combined the Kramers opacity with the cen-
trifugal force in runs K1 and K2 and found that, first, the solution
of the ADW is different in the run without the centrifugal force
(K1) and with the centrifugal force (K2) as compared with the
runs with the spatially fixed heat conductivity (set E). Notably,
Run K2 showed a migration pattern which was not obtained in
any of the other runs (see Fig 7). This confirms that the Kramers
opacity changes the ADW solution but it is even more complex
when the centrifugal force is included.

Despite the experiments described above, we were unable
to identify the mechanism responsible for the changing the be-
havior of the ADWs. The clearest change due to the centrifugal
force is seen in the differential rotation but its effect must be
indirect through the dynamo mechanism because advection by
a shear flow is incompatible with the practically rigidly propa-
gating ADWs. The details of the dynamo process in 3D simu-
lations are highly complex (e.g. Warnecke et al. 2021) and cur-
rent mean-field methods are applicable only in the axisymmetric
case. Observations could help to better understand this by per-
forming an analysis of the surface magnetic field and its cycles

as a function of rotation. Such study was performed by Lehtinen
et al. (2016) and they found that a group of stars showed clear
differences between the photometric rotation period and activity
period. They proposed that this trend could be explained by the
presence of prograde ADWs. However, our simulations suggest
that when a prograde wave is affected by the centrifugal force,
it changes to a retrograde propagation. Such discrepancy could
be better understood by extending the observations and by per-
forming more realistic simulations in a wider parameter regime.
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